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Abstract. In the literature there has been considerable attention given to the exploration of 
relationships between certain diophantine equations and class numbers of quadratic fields. In 
this paper we provide criteria for the insolvability of certain diophantine equations. This result 
is then used to determine when related real quadratic fields have class number bigger than 1. 
Moreover, based on criteria which we find for the solvability of a certain class of diophantine 
equations, we are able to determine when the class number of related imaginary quadratic 
fields is divisible by a given integer. 

Introduction. The primary aim of this paper is to investigate the relationship 
between solvability of diophantine equations and class numbers of quadratic fields. 
Most such investigations into real quadratic fields in the literature deal with 
Richaud-Degert (R-D)-type quadratic fields (see [4] and [14]); that is, those Q(Vn ) 
where n is a square-free positive integer of the form n = 12 + r with integer / > 0, 
integer r dividing 41 and -l < r < 1. The seminal paper in this regard is by Ankeny, 
Chowla, and Hasse [1]. However, many authors have studied such fields and 
considered generalizations thereof. Among them are: Azuhata [2], Kutsuna [8], Lang 
[9], Takeuchi [15], Yokoi [16]-[18], and the author [10]-[13]. In Section 1 we 
investigate a larger class of real quadratic fields than the (R-D)-types. We obtain 
conditions for the solvability of certain diophantine equations and use the result to 
determine nontriviality of the class numbers of these real quadratic fields. Moreover, 
we obtain as immediate consequences many of the above results in the literature. 

The connection between solvability of certain diophantine equations and the 
divisibility of the class number of imaginary quadratic fields by a given integer has 
been given much attention. Among such inquiries are: Cowles [3], Hongwen [7], 
Gross and Rohrlich [5], and the author [11] and [13]. In the second section we obtain 
sufficient conditions for a quadratic field (real or imaginary) to have the exponent of 
its class group divisible by a given integer t. This result is most readily applied to 
imaginary quadratic fields upon which we focus. We provide sufficient conditions 
(in elementary arithmetic terms) for the exponent of the class group of certain 
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imaginary quadratic fields to be divisible by t. Furthermore, results from the 
literature cited above are obtained as immediate consequences. 

Finally, in both sections we provide tables of examples to illustrate the above 
results. 

1. Real Quadratic Fields and Diophantine Equations. First we need three pre- 
liminary lemmas. Before proceeding with these results we comment on notation and 
definitions which are used therein. 

Let n be a square-free positive integer and let t be any positive integer. If (u, v) is 
an integer solution of the diophantine equation x2 - ny2 - ? 4t, then we say that 
(u, v) is a trivial solution when t = m2 and m divides both u and v. Otherwise, 
(u, v) is called nontrivial. Finally, in what follows, N denotes the norm from Q(n) 
to Q. 

The first lemma is a generalized Davenport-Ankeny-Hasse result which we proved 
in [12]. 

LEMMA 1.1. Let n be a square-free positive integer and let t be any positive integer. 
Suppose that (A + BVH)/a is the fundamental unit of Q(VH), where a = 2 if n -1 
(mod 4) and a = 1 otherwise, and let N((A + BVn)/a) = 3. If there is a nontrivial 
solution to the diophantine equation x 2 - ny 2 = + a 2t, then 

t > ((2A/a) -3-1)/B2. 

The next result is a generalized Richaud-Degert result proved in [8, Theorem 1, p. 
580]. In what follows sgn(r) = r/frf for an integer r. 

LEMMA 1.2. Let n be a square-free positive integer and let v be the least positive 
integer such that v2n - 12 + r with integer r E (-1, 1] and 41 0 (mod r). Then the 
fundamental unit een of Q(vn7) is of the following form: 

(i) e.n = 1 + vvn and N(Ec) = -sgn(r) for IrI = 1 (except for (n, v) = (5, 1)). 

(ii) E, = (I + vrn )/2 and N(en) =-sgn(r) for frl = 4. 

(iii) En = [(212 + r) + 21vr/n1/ri and N(en) = 1 for jrl + 1 or 4. 

The final lemma generalizes [12, Theorem 1.1]. 

LEMMA 1.3. Let n be a square-free positive integer, t any positive integer, and v the 
least positive integer such that v2n = 12 + r with integer r E (-1, 1] and 41- 0 
(mod r). If x2 _ ny 2 = + 2t has a nontrivial solution in integers (x, y), where a = 2 
if n 1 (mod 4) and a = 1 otherwise, then 

(i) If r = and (n, v) # (5,1) then ta2v2 > 21. 
(ii) If r = -1 then tv2 > 2(1 - 1). 

(iii) If r = 4 then tv2> 1. 
(iv) If r = -4 then tv2> 1-2. 
(v) If Ir( I 1 or 4 then toa2v2 > frl. 

Proof. Let 8 be as defined in Lemma 1.1. 
(i) If r = 1 then 8 = -1. If 1 is even then a = 2, and if (n, v)+ (5,1) then 

A = 21 and B = 2v, by Lemma 1.2. Therefore, from Lemma 1.1 we have: t > 1/2v2; 
that is, a2v2t > 21. If I is odd then by Lemma 1.2, a = 1, A = 1 and B = v, 
provided (n, v) + (5, 1). Therefore, by Lemma 1.1: t > 21/v2; that is, tv2 > 21. 
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(ii) If r = -1 then a = 8 = 1. By Lemma 1.2, A = I and B = v. Therefore, by 
Lemma 1.1: t > (21 - 2)/v2; that is, tv2 > 2(/ - 1). 

(iii)-(iv) If Irl = 4 then a = 2, 8 = -sgn(r), A = / and B = v by Lemma 1.2. 
Therefore, by Lemma 1.1: If r = 4 then 8 = -1 and t > ((21/2)/v2); that is, 
tv2 > 1. If r = -4 then 8 = 1 and t > ((21/2) - 2)/v2; that is, v2t > / - 2. 

(v) If rrl 1 or 4 then 8 = 1, A = a(212 + r)//rf, and B = 2lva/lrl by Lemma 
1.2. Thus from Lemma 1.1: t > ((2a(212 + r)/afrf) - 2)/((412v2a 2)/r2). Thus: 
t > (212 Ir + rjrf - r2)/(2 a212v2). If r > 0 then t > r/v2a2; that is, to2v2 > Irj. If 
r < 0 then t ? -(12r + r2)/12v2a2; that is, ta2v2 > -(12r + r2)/12. Now, if ta2v2 
< -r - 1 then -r - 1 > -(12r + r2)/12 whence 12 < r2, contradicting the hy- 
pothesis. Hence ta 2v2 > -r = Ir 1. L 

Lemma 1.3 has, as immediate consequences, several results in the literature. 
Among these are: Ankeny, Chowla, and Hasse [1, Lemma, p. 218] and S. D. Lang [9, 
Lemma, p. 70]. 

Now we are in a position to prove the first main result which generalizes [12, 
Theorem 1.2]. 

THEOREM 1.1. Let n > 5 be a square-free integer and let v be the least positive 
integer such that v2n = 12 + r with integer r e (-l, 1] and 41 0 (mod r) and let the 
following conditions be satisfied: 

(i) / = st where s > 0 and t > 1 are integers with g.c.d. (t, r) = 1. 
(ii) r divides 4s with -2s < r ? 2s. 

(iii) If n 1 (mod 4) then Irf = 1 or 4. 
(iv) If r = 1 and / is even then s > 2v2. 
(v) If r = land / is odd then 2s > V2. 

(vi) If r = -1 then tv2 < 2(1 - 1). 
(vii) If r = 4 then s > V2. 

(viii) If r = -4 then t(s - V2) > 2. 
(ix) If Irf I 1 or 4 and v> 1 then t> Iri. 

Furthermore, let a = 2 if n 1 (mod4) and a = 1 otherwise. If x- - ny2 = ?a2t 
has a nontrivial integer solution (x, y), and if (x, y) = (uo, vo) is the minimal solution 
(that is, u > 0 and vo > 0 is smallest), then Irf 1 {1, 4) and either: 

(a) vo < v2 and if vo = v then v > 1 or 
(b) vo(2 - Irf) > v2(1 - Irl) if Irl ? 2 and vo > 1 and 
(c) v > 1 if r = 2 and 
(d) either v > 1 or both vo = 1 and if r = -2 then / = 3. 
In particular, if v = 1 then x2 - ny2 = + a 2t has a nontrivial solution if and only if 

n = 7 and t = 3; that is, x2 - 7y2 = -3 (in fact: l = 3, r = -2, uo = 2 and vo = 1). 

Proof. Hypotheses (iv)-(viii) imply, by Lemma 1.3(i)-(iv), that when Irl e (1, 4) 
then x2 - ny2 = +a 2t cannot have an integer solution. Henceforth we assume 
r {1, 4), which implies by hypothesis (iii) that a = 1. We now prove the result by 

contradiction. Thus we assume 

(1) vo>v2 or vo=v=1 

and 

(2) v0(2 -I ) < v2(1 -|r) if Irj 2 and vo > 1 
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or 

(3) v=1 if r=2, 

or 

(4) v = I and either vo > 2 or 1 / 3 if r = -2. 

We have +tv2 = (uOv)2 - (12 + r)vO2. For the sake of convenience, we let w = 
+tv2. Let a = IuOv - /vol > O and b = uOv + 1v0 > ( whence w + rv 2 = 

(u v - /vo)(uov + /vo). Set a = 1 if w > -rv2 and a = -1 otherwise, whence 
(a - l)(b + a) = ab + aa - b - a 0; that is, ab - a > b - aa. Therefore, by 
hypothesis (i), 

0 < I|W|(S -1) = I12 _IW| I= (((b -aa)12vo) V2) -ab + arVO2 ~~~~~~~~~~~~~~~~~~~~~~ 
= ((b - aa) v2 - 2voab + 2arvg)/2vo 

< ((ab - a)v2 - 2voab + 2arrv3)/2vo 

= -(a(V2 - 2rV3) + ab(2vo - v2))/2vo, 

which by (1) is less than zero if ra < 0. Thus we assume henceforth that ra > 0. 
Furthermore, from the above inequality we get 

(5) ab < -a( v2 - 2rv3 )/(2vo -v2 ). 

Let A = (212 + r)/jrj and B = 21v/lrl whence A + Brn is the fundamental unit 
of Q(rn ) by Lemma 1.2(iii). It is straightforward to check (using the methodology of 
[12, Lemma 1.1] for example) that (uOA - nvOB, uOB - v0A) is a nontrivial 
solution of x2 - ny2 = w. Therefore, by the minimality of vo we get 

I uOB - v0A| =(2uO1v - vo(212 + r))/Jr II >? vo, 

whence either 

(6) 21(uov - vol) > vo(r + ?r) 

or 

(7) 21(uov - vol) < vo(r -r) 

Case I: a = -1 and r < 0. If (6) holds then uOv > vol. Thus, 

-rv2 > w = (u v)2 _ (12 + r) v2 > (vOj)2_ (2 + r) V2 =r2 

a contradiction. 
Thus (7) holds; that is, uOlv < VO(12 + r). Thus, 

12W = 12(u v)2 - 12(12 + r)v 2 < (12 + r)2v2 - 12(12 + r)vO = r(12 + r)v2, 

whence 

(8) 12W < r(12 + r)v . 

If w > 0 then by (8) we have 0 w /2W < r(12 + r)v2 < 0, a contradiction. There- 
fore, we assume for the remainder of Case I that w < 0. 

Assume vo > -w. Therefore, from (8), 

12V > -12w > -r(12 + r)v2, 

whence 

r2v2 > -12(1 + rvo) v0. 
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Thus, 

r 2vv4 ' -(1v2)(l + rv0) v0 ? -w2(l + rv) vo, 

whence 

W2 < -[(r2Uv2v4)/(l + rvo) vo] < v4(1 - r), 

contradicting hypothesis (ix), if v > 1, and Lemma 1.3(v), if v = 1. 
Now assume v0V2(-r - 1) > -w > v0. (Observe that, by Theorem 1.1(v), either 

v0 > 1 or v > 1.) Therefore, from (8) we have 

12v2v (-r - 1) > -12w > -r(12 + r)v0, 

whence 

r V > 12 (v2v0(r + 1) - rv2). 

Therefore, 

r 0v4 > (lv2)2(v2vo(r + 1) - rv) > w2(v2vO(r + 1) rvo). 

It follows from (1) that v2v0(r + 1) - rv2 > 0. Therefore, 

w2 < r2v 0v4/(v2(r + 1)-rvo). 

Hence by (1), w2 < r2v4, contradicting hypothesis (ix), if v > 1, and Lemma 1.3(v), 
if v = 1. 

Now assume -w > v0v2(-r - 1). From (5) we have 

ab < ( V2 - 2rv3 )/(2v0 - v2), 

whence 

-w = ab + rv2 [(V2 - 2rv3)/(2v -v2)] ? rv2 

= v2(1 - rv2)/(2vo - v2). 

Thus, 

(9) -W < V0v2(-r - 1) +(V2 (r + 2)V2 - v0(r + 1)v4 + V2)/(2vo - V2). 

If v0 > I and r = -2 then by (2), vo(r + 2) < (r + 1)v2, whence by (1), 

V2(r + 2)V2 - v0(r + 1)v4 + V2 < V2 < Vo < 2vo - V2. 

Therefore, from (9) we may conclude 

v0v2(-r - 1) < -w < vOv2(-r - 1) + 1, 

a contradiction. Hence v0 = 1 or r = -2. 
If v0 = 1 then by (1), v = 1. If r 0 -2 then from (9), -r - 1 < -w < -r + 1. By 

hypothesis (i), -w # -r, whence -w = t = -r + 1. Therefore u2 - n = r - 1; that 
is, u2 - 12 = 2r - 1. Recall that u0 + 1= b > 0 and 1- u0 = a > 0. Thus -r= 
(ab - 1)/2 and s = (a + b)/(ab + 1). By hypothesis (ii), (4s/(-r)) must be an 
integer; that is, 8(a + b)/((ab)2 - 1) is an integer. In particular, we must have 
8(a + b) > (ab)2 - 1. Since b > a then 16b > 8(a + b) > (ab)2 - 1; that is, 1 > 

b(a2b - 16), whence a = 1 and b < 16, since a and b are odd. Therefore b G S = 
{3, 5, 7,9, 11, 13, 15}. It is easy to check that 8(a + b)/((ab)2 - 1) is an integer for 
only b = 3, 5 or 9 of S. If b = 9 then r = -4, a contradiction. If b = 5 then r = -2, 
contradicting our assumption. If b = 3 then r = -1, a contradiction. 
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Now if vo = 1 and r = -2 then v = 1 and 1 = 3 by (4). By (9), 1 < -w < 3. 
Therefore, by hypothesis (i), t = 3, whence u2 - 12 = -5, forcing / = 3, a contradic- 
tion. Hence vo > 2 and r = -2. Therefore, by (4), v = 1. By (9), 

< -w < (2v0 + 1)/(2v0-1) < 2, 

a contradiction. 
Case II: a = 1 and r > 0. If (7) holds then uov < vol. Therefore, 

-rv2 < W = (UOV)2 _(12 + r)vO2 < (Vol)2 (12 + r)vO = -rv2 

a contradiction. Hence (6) holds; that is, uovl> vO(l2 + r). Thus, 

12W = (luOv)2 - 12(12 + r)v0 ? V2(l2 + r2) - 12(12 + r)V2 

= r(l2 + r)v2. 

Hence, 

(10) 12w > r(12 + r)vO2 

If w < 0 then 0 > 12w > r(l2 + r)v2> 0, a contradiction. Henceforth, w > 0. 
From (5), 

ab < (2rv3 - V2)/(2vo - V2). 

Thus, 

w = ab - rv 2 < [(2rv3 - V2)/(2vo - V2)] - rV2 

= v2(rv2 - 1)/(2vo - v2) 

= V2(r - 1)Vo +(V2(2 - r)V2 + v0(r - 1)V4 - V2)/(2v0 - V2). 

By (1)-(3), 

(V2(2 - r)V2 + v0(r - 1)V4 - v2)/(2v0 -V2) < 1 

If w > v2(r - 1)vo then v2(r -l )vo < w < v2(r - 1)vo + 1, acontradiction. Hence, 
0 < w < v2(r - 1)vo; that is, vo > w/(r - 1)v2 > 0. Thus from (10), 

12w > r(12 + r)v2 > (r(12 + r)vow)/(r - I)v2 > (12 + r)w, 

where the last inequality follows from (1). However, r > 0, so we have a contradic- 
tion. R 

An immediate consequence of Theorem 1.1 is Yokoi [16, Theorem 2, p. 153]. 
We now apply Theorem 1.1 to the determination of nontrivial class numbers of 

real quadratic fields. The following result generalizes [12, Theorem 2.1]. 

THEOREM 1.2. Let n > 7 be a square-free integer and let v be the least positive 
integer such that v2n = /2 + r, where either v = 1 and r e (-1, 1], 41 0 (mod r) and 
n # 1 (mod 4), or In = 1, 4. Let q be a prime dividing / such that: if r = 1 and / is 
even then 1 > 2qv2; if r = 1 and / is odd then 21 > V2q; if r = -1 then qv2 < 2(1 - 1); 
if r = 4 then I > qv2; and if r = -4 then I > 2 + qv2. Then h(n) > I if any of the 
following conditions hold: 

(i) g.c.d.(q, r) = 1, q > 2 and (r/q) = 1, where ( / ) denotes the Legendre 
symbol. 
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(ii) q = 2 and r * 1 is odd. 
(iii) q = 2, r = 1 and I 0 (mod 4). 
(iv) q divides r and IrI > q. 
(v) Irl = q > 2. 

Proof. If v = 1 then the result is [12, Theorem 2.1]. If v * 1 then Irl = I or 4 by 
hypothesis. Suppose h(n) = 1. Therefore, there exist integers (x, y) such that: 

(a) In cases (i) and (iii), x2 - ny2= +a2q, where a = 2 if n 1 (mod 4) and 
a = 1 otherwise, since q splits in Q('). 

(b) In case (ii) with r = -1, x2 _ ny2 =+ 2, since 2 ramifies in Q(n). 
(a)-(b) contradict Theorem 1.1. 0I 
The following table provides an application of Theorem 1.2. The entries are all of 

the integers less than 100 available by this method. Note that of the 22 integers n 
less than 100 with h(n) > 1 we miss only four by this method, namely 55, 66, 70, 
and 91. 

TABLE 1.1 

v I r n h(n) 

1 3 1 10 2 
1 4 -1 15 2 
1 5 1 26 2 
1 5 5 30 2 
1 6 -2 34 2 
1 6 -1 35 2 
1 6 3 39 2 
1 6 6 42 2 
1 7 2 51 2 

13 99 1 58 2 
1 8 1 65 2 
5 43 1 74 2 
1 9 -3 78 2 
1 9 -2 79 3 
1 9 1 82 4 
1 9 4 85 2 
1 9 6 87 2 
1 10 -5 95 2 

2. Imaginary Quadratic Fields and Diophantine Equations. The first main result 
actually holds for real or imaginary quadratic fields. However, the theorem is more 
readily applied to imaginary quadratic fields as its corollary illustrates. Moreover, 
the following generalizes [11, Theorems 2.1 and 2.2]. In what follows, WK denotes the 
class group of K Q(fn). Moreover, by a primitive element (x + yVH) E (9K, the 
ring of integers of K, we mean that g.c.d.(ux, ay) = a, where a = 2 if n-1 (mod 4) 
and a = 1 otherwise. Finally, for a prime p and an integer m, pa -ImIp denotes 
the fact that pa divides m but paIl does not. 

THEOREM 2.1. Let n be a square-free integer and let m > 1, t > 1 be integers such 
that 

(:i) + m' is the norm of a primitiue element from K -Q( 
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(ii) ? mc is not the norm of a primitive element from K for all c properly dividing t, 
and 

(iii) if t =M 12 = 2 then n 1 (mod 8). 
Then t divides the exponent of WK. 

Proof. By (i) there are relatively prime integers x0 and yo such that xo - nyo = 

?a2mt, where a = 2 if n 1 (mod4) and a = 1 otherwise. Let m = 

where the p,'s are distinct rational primes and the a,'s are positive integers. We 
claim that PA(K = g,9, for distinct OK-primes 9, and 9, with i E {1,..., r}. If 

Pi> 2, then (n/p,) = (ny2/p,) = (xo2 _ 2mt/pl) = (x2/p,) = 1. If p, = 2, then by 
hypothesis (iii), n 1 (mod 8), and the claim follows. 

Note that if z1 = [xo + yoln/]/a and Z2 = [x0 - y0x/n]/a, then 

(m) = (Zl)(Z2) = [I9ai] [9 as] . 

Now, if ba divides both z1 and z2, then z, + Z2 = X0 and (z, - Z2)2 = yo2n are in 

a,. However, g.c.d.(xo, n) = 1, since t > 1 and n is square-free. Moreover, 

g.c.d.(xo, yo) = 1, whence 1 E Hi, a contradiction. Hence, for a suitable choice of 

S. =a 9 or 9i we have ([x + yx/ ]/a) = (a,' 
R 

j)I= d'1, say. Let g 
g.c.d.(t, h(n)). Then there are integers u and v such that tu + h(n)v = g. Hence 

-2g =ltu+h(n)v - (~jt)u(~h(n))v is principal. Therefore, W?/g yields a primitive 

element of which + mg must be a norm. By (ii), g = t; that is, _ is an element of 
order t in WK, so t divides the exponent of WK. [ 

An immediate consequence of Theorem 2.1 is Cowles [3, Theorem, p. 113]. 
The following is an application of Theorem 2.1 to imaginary quadratic fields and 

generalizes [11, Corollaries 2.4 and 2.6]. 

COROLLARY 2.1. Let n be a square-free negative integer and m > 1, t > 1 any 
integers such that m' is the norm of a primitive element of Q(n ). Let x2 - ny02 = a 2mt 

(with a = 2 if n 1 (mod 4) and a = 1 otherwise) be a solution such that the 

following conditions are satisfied: 

(1) X2 < a 2mtl(m2-1). 

(2) yo < b for all positive integers b which satisfy nb2 = a2 - 4mc for some c 
properly dividing t and some integer a > 0 relatively prime to b. 

(3) If t = Im12 = 2 then n 1 (mod 8). 
Then t divides the exponent of CK. 

Proof. Suppose there is a proper divisor c of t and relatively prime integers a and 
b such that 4mc = a2 - nb2. Therefore, 4mc > -nb2 = _(x2 - 4m')b2/y02, whence 

(y021b2Mt-c-l) +(X0214m'-I) > m. 

However, (xO/4mt') 0 (XO/mtkJ2) < m - 1 and yo/b2 1 by (2), whence 

yl/b mt-c- 11/mt-'- 
< 1. Therefore, 

1 +(m - 1) > (yo2/b2mI-c-1) +(x 2/02mt-) > m, 

a contradiction. [I 
Immediate consequences of Corollary 2.1 are Gross and Rohrlich [5, Theorem- 5.3, 

p. 222] and Hongwen [7, Theorem 6, p. 1277]. Both of the above dealt only with the 
case x0 = yo = 1. 
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The following table illustrates Corollary 2.1 by providing 15 examples of certain 
values available by this method. Note that for yo = 1, condition (2) of Corollary 2.1 
is vacuous, and in fact for small values of yo the result is easy to apply. Few values 
of n are unavailable by this method. 

TABLE 2.1 
x y m t a -n h(n) 

3 2 7 2 1 10 2 
5 2 3 4 1 14 4 
1 1 2 2 2 15 2 
2 1 5 2 1 21 4 
9 2 13 2 1 22 2 

29 1 6 3 2 23 3 
1 1 2 3 2 31 3 
8 2 14 2 1 33 4 
1 1 3 2 2 35 2 
9 1 2 5 2 47 5 
2 1 3 4 1 77 8 
7 1 2 5 2 79 5 

13 1 8 2 2 87 6 
3 1 5 2 2 91 2 
7 1 6 2 2 95 8 

All values in the above table are taken from "Groupe des classes des corps 
quadratiques imaginaires Q( -a), a < 10,000" by Bernard Oriat of Faculte des 

Sciences de Besancon. 
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